我们已经准备好了,你呢?

2023我们与您携手共赢,为您的企业形象保驾护航!


喜讯:国内、香港、海外云服务器租用特惠活动,2核/4G/10M仅需31元每月,点击抢购>>>

点击这里点击这里申请百度智能云VIP帐号,立即体验BML>>>

百度智能云全功能AI开发平台BML-基于 Notebook 的 NLP 通用模板使用指南

基于 Notebook 的 NLP 通用模板使用指南

本文采用模板中预置的文心套件开发文本分类-单文本单标签模型的过程为例,介绍在使用 NLP 模板时,从创建 Notebook 任务到引入数据、训练模型,再到保存模型、部署模型的全流程。

创建并启动Notebook

1、在 BML 左侧导航栏中点击『Notebook』

2、在 Notebook 页面点击『新建』,在弹出框中填写公司/个人信息以及项目信息,示例如下:

填写基础信息

image.png

填写项目信息

image.png

3、对 Notebook 任务操作入口中点击『配置』进行资源配置,示例如下:

选择开发语言、AI 框架,由于本次采用 wenxin 进行演示,所以需要选择 python3.7、PaddlePaddle2.0.0。选择资源规格,由于深度学习所需的训练资源一般较多,需要选择GPU V100的资源规格。

image.png

完成配置后点击『确认并启动』,即可启动 Notebook,启动过程中需要完成资源的申请以及实例创建,请耐心等待。

4、等待 Notebook 启动后,点击『打开』,页面跳转到 Notebook,即完成 Notebook 的创建与启动,示例如下:

image.png

训练文本分类-单文本单标签模型

下载文心套件

打开进入 Notebook,在左侧包管理插件找到 wenxin,点击安装最新版本。

image.png

安装成功后,回到用户当前目录,即可看到 wenxin 文件夹。

image.png

准备训练数据

1、数据来源一:导入用户数据。

通过左边选择栏的导入数据集选项,进行数据集导入。导出的数据位于用户目录的 data/ 文件夹。

image.png

2、数据来源二:使用 wenxin 套件自带的数据集。

训练模型

1、若需要使用用户导入的数据集,则需要更改训练的配置文件中的数据集路径。

例如使用wenxin/tasks/text_classification/examples/cls_ernie_2.0_base_cnn_ch.json配置文件,则使用 vim 进行编辑,修改 data_path

image.png

2、下载预训练模型,在终端中执行命令如下:

cd wenxin/tasks/model_files/
bash download_ernie_2.0_base_ch.sh

3、模型训练。

cd ../text_classification
python run_with_json.py --param_path examples/cls_ernie_2.0_base_cnn_ch.json

训练完成后会在该目录中生成 output 文件夹,里面存放了训练生成的模型。

image.png

4、模型拷贝,由于生成模型版本的组件只能读取 PretrainedModel 文件夹下的文件,所以需要将模型部署相关的文件都拷贝至该文件夹下。

在终端中执行命令,将模型拷贝至 PretrainedModel 文件夹下。

cp output /home/work/PretrainedModel/ -r

拷贝训练参数配置 cls_ernie_2.0_base_cnn_ch.json 中 reader 的 vocab 和 embedding.config_path 指定的文件,以便用于后续的公有云部署。

cp ../model_files/config/ernie_2.0_base_ch_config.json /home/work/PretrainedModel/ernie_2.0_base_ch_config.json
cp ../model_files/dict/vocab_ernie_2.0_base_ch.txt /home/work/PretrainedModel/vocab.txt
cp output/cls_ernie_2.0_base_cnn_ch/save_inference_model/inference_step_126_enc/infer_data_params.json /home/work/PretrainedModel/infer_data_params.json

5、生成模型版本。

点击左侧导航栏中的生成模型版本组件,打开弹窗填写信息。

image.png

image.png

image.png

点击『生成』即可生成模型版本,生成模型版本一般需要数十秒,请耐心等待。

配置并发布模型

BML NoteBook 的 NLP 通用模板产出的模型支持基于百度自研的PaddlePaddle深度学习框架和文心套件进行开发的文本分类-单文本单标签、文本分类-单文本多标签、短文本相似度、序列标注四种应用方向的模型进行部署。下面以文本分类-单文本单标签的模型为例,详细介绍如何配置模型:

1、查看前置条件是否满足:需要训练完成,并生成了相应的模型生成版本(详见训练模型的第五步)。

2、回到 BML Notebook 列表页,点击『模型发布列表』即可进入配置页面。

image.png

3、点击配置,即可进入配置流程。

image.png

4、填写模型信息。

image.png

5、选择待发布的模型文件,点击确定按钮。

image.png

其中:vocab.txt 为词表文件,output为模型文件,ernie_2.0_base_ch_config.json 和 infer_data_params.json 为配置文件,非必须。

6、配置出入参及数据逻辑处理。

点击立即编辑,即可进入代码编辑页面。主要需要修改 vocab_path 和 inference_model_path 两个字段的路径为所选择的路径(注:『选择模型文件』后的模型文件将存放在系统制定的路径下,用户在代码中可直接采用相对路径,如 vocab.txt 文件的路径为 ./vocab.txt ,output 文件夹的路径为 ./output)。

在本次示例中, vocab_path 默认路径就是所选择的路径,无须修改,仅需要修改inference_model_path即可。

image.png

修改为:

image.png

最终的代码如下:

{
  "dataset_reader": {
    "predict_reader": {
      "name": "predict_reader",
      "type": "BasicDataSetReader",
      "fields": [
        {
          "name": "text_a",
          "data_type": "string",
          "reader": {
            "type": "ErnieTextFieldReader"
          },
          "tokenizer": {
            "type": "FullTokenizer",
            "split_char": " ",
            "unk_token": "[UNK]"
          },
          "need_convert": true,
          "vocab_path": "./vocab.txt",
          "max_seq_len": 512,
          "truncation_type": 0,
          "padding_id": 0,
          "embedding": {
            "type": "ErnieTokenEmbedding",
            "use_reader_emb": false,
            "emb_dim": 768,
            "config_path": "ernie_2.0_base_ch_config.json"
          }
        }
      ],
      "config": {
        "data_path": "./data/predict_data",
        "shuffle": false,
        "batch_size": 8,
        "epoch": 1,
        "sampling_rate": 1.0
      }
    }
  },

  "inference": {
    "output_path": "./output/predict_result.txt",
    "inference_model_path": "./output/cls_ernie_2.0_base_cnn_ch/save_inference_model/inference_step_126_enc",
    "PADDLE_USE_GPU": 1,
    "PADDLE_IS_LOCAL": 1,
    "num_labels": 2,
    "extra_param": {
      "meta":{
        "job_type": "text_classification"
      }

    }
  }
}

配置文件对于服务部署来说包括两个部分: dataset_reader(数据部分)和 inference 部分,相关字段的解释如下表所示:

dataset_reader 数据部分

{
  "dataset_reader": {
    "predict_reader": { ## 预测推理,则必须配置predict_reader,其配置方式与train_reader、test_reader类似,需要注意的是predict_reader不需要label域,shuffle参数必须是false,epoch参数必须是1。
      "name": "predict_reader",
      "type": "BasicDataSetReader", ## 采用BasicDataSetReader,其封装了常见的读取tsv、txt文件、组batch等操作。
      "fields": [ ## 域(field)是文心的高阶封装,对于同一个样本存在不同域的时候,不同域有单独的数据类型(文本、数值、整型、浮点型)、单独的词表(vocabulary)等,可以根据不同域进行语义表示,如文本转id等操作,field_reader是实现这些操作的类。
        {
          "name": "text_a", ## 文本分类只有一个文本特征域,命名为"text_a"。
          "data_type": "string", ## data_type定义域的数据类型,文本域的类型为string,整型数值为int,浮点型数值为float。
          "reader": {
            "type": "ErnieTextFieldReader"  ## 文本域的通用reader "CustomTextFieldReader",数值数组类型域为"ScalarArrayFieldReader",数值标量类型域为"ScalarFieldReader",这里的取值是对应FieldReader的类名
        &a
推荐:TOP云智能建站优惠活动,仅880元即可搭建一个后台管理五端合一的智能网站(PC网站、手机网站、百度智能小程序、微信小程序、支付宝小程序),独享百度搜索SEO优势资源,让你的网站不仅有颜值有排面,更有排名,可以实实在在为您带来效益,请点击进入TOP云智能建站>>>,或咨询在线客服了解详情。


我们已经准备好了,你呢?

2023我们与您携手共赢,为您的企业形象保驾护航!

在线客服
联系方式

热线电话

131-3501-0006

上班时间

周一到周五

公司电话

130-0743-9476

二维码
线